Discriminative Transformation for Sufficient Adaptation in Text-Independent Speaker Verification
نویسندگان
چکیده
In conventional Gaussian Mixture Model – Universal Background Model (GMM-UBM) text-independent speaker verification applications, the discriminability between speaker models and the universal background model (UBM) is crucial to system’s performance. In this paper, we present a method based on heteroscedastic linear discriminant analysis (HLDA) that can enhance the discriminability between speaker models and UBM. This technique aims to discriminate the individual Gaussian distributions of the feature space. After the discriminative transformation, the overlapped parts of Gaussian distributions can be reduced. As a result, some Gaussian components of a target speaker model can be adapted more sufficiently during Maximum a Posteriori (MAP) adaptation, and these components will have more discriminative capability over the UBM. Results are presented on NIST 2004 Speaker Recognition data corpora where it is shown that this method provides significant performance improvements over the baseline system.
منابع مشابه
Kernel Based Text-independnent Speaker Verification
The goal of a person authentication system is to authenticate the claimed identity of a user. When this authentication is based on the voice of the user, without respect of what the user exactly said, the system is called a text-independent speaker verification system. Speaker verification systems are increasingly often used to secure personal information, particularly for mobile phone based ap...
متن کاملImproving GMM-UBM speaker verification using discriminative feedback adaptation
The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...
متن کاملEnd-to-End Text-Independent Speaker Verification with Triplet Loss on Short Utterances
Text-independent speaker verification against short utterances is still challenging despite of recent advances in the field of speaker recognition with i-vector framework. In general, to get a robust i-vector representation, a satisfying amount of data is needed in the MAP adaptation step, which is hard to meet under short duration constraint. To overcome this, we present an endto-end system wh...
متن کاملComparison of discriminative input and output transformations for speaker adaptation in the hybrid NN/HMM systems
Speaker variability is one of the major error sources for ASR systems. Speaker adaptation estimates speaker specific models from the speaker independent ones to minimize the mismatch between the training and testing conditions arisen from speaker variabilities. One of the commonly adopted approaches is the transformation based method. In this paper, the discriminative input and output transform...
متن کاملSpeaker characterization using principal component analysis and wavelet transform for speaker verification
In this paper, we investigate the use of the Wavelet Transform for text-dependent and text-independent Speaker Verification tasks. We have introduced a Principal Component Analysis based wavelet transform to perform frequencies segmentation with levels decomposition. A speaker dependent library tree has been built, corresponding to the best structure for a given speaker. The constructed tree is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006